INSTRUMENTATION DEVICES AND SYSTEMS-I

SUBJECT CODE: PCEI4302

B.Tech, Fourth Semester

Prepared By

Dr. Kanhu Charan Bhuyan

Asst. Professor

Instrumentation and Electronics Engineering

COLLEGE OF ENGINEERING AND TECHNOLOGY BHUBANESWAR

INSTRUMENTATION DEVICES AND SYSTEMS-I

Module-1

Elements of Measurement System;

Static Characteristics, Systematic Characteristics, Statistical Characteristics, calibration

Dynamic Characteristics, transfer functions of typical sensing elements, step and frequency response of first and second order elements, dynamic error in measurement systems

Module-2

Sensing Elements:

Resistive sensing elements: potentiometers, Resistance Temperature Detector (RTD), thermistors, strain gages.

Capacitive sensing elements: variable separation, area and dielectric;

Inductive sensing elements: variable reluctance and LVDT displacement sensors;

Electromagnetic sensing elements: velocity sensors,

Thermoelectric sensing elements: laws, thermocouple characteristics, installation problems, cold junction compensation.

IC temperature sensor

Elastic sensing elements: Bourdon tube, bellows and diaphragms for pressure sensing, force and torque measurement.

Module-3

Signal Conditioning Elements:

Deflection bridge: design of resistive and reactive bridges, push-pull configuration for improvement of linearity and sensitivity

Amplifiers: Operational amplifiers-ideal and non-ideal performances, inverting, non-inverting and differential amplifiers, instrumentation amplifier, filters, A.C. carrier systems, phase sensitivity demodulators and its applications in instrumentation

Flow Measurement:

Basics of flow measurement: differential pressure flowmeters- Pitot tube, Orifice plate, Ventri tube; Rotameter, turbine type flowmeter, electromagnetic flowmeter, Doppler shift flowmeter.

Text Books:

- 1. Principle of Measurement Systems- J.P. Bentley (3/e), Pearson Education, New Delhi, 2007.
- 2. Introduction to Measurement and Instrumentation- A. K. Ghosh(3/e), PHI Learning, New Delhi, 2009

3. Transducers and Instrumentation- D. V. S. Murthy(2/e), PHI Learning, New Delhi, 2009.

Reference Books:

- 1. Measurement Systems Application and Design- E. O. Doeblin (4/e), McGraw-Hill, International, NY.
- 2. Instrumentation for Engineering Measurements- J.W. Dally, W.F. Riley and K.G. McConnel (2/e), John Wiley, NY, 2003.
- 3. Industrial Instrumentation- T.R. Padmanabhan, Springer, London, 2000

Module-I

1. Elements of Measurement System:

Block Diagram of Measurement System

1. Sensing Element

Sensing elements take the input and give the output which depends on the variable to be measured. It consists of two parts.

- I. Primary Sensing Element
- II. Secondary Sensing Element
- **Sensor:** Sensor is a primary sensing element which converts one form of physical quantity to another form.
- **Transducer:** It is a device which convert one form of energy to another form. In electrically form generally transducer convert mechanical energy to electrical energy.

[Ques. Difference between Sensor and Transducer?]

Ex: - Strain gauge mounted on the load cell. Load cell is the primary Sensing element.

I/p- Strain O/p- Resistance change finally voltage

Ex: Thermocouple.

2. Signal Conditioning Element

The input to signal conditioning element is from the sensing element and it gives an output that I more suitable for further processing. The Output is generally in the form of DC voltage, DC current and frequency.

Ex1: Bridge circuit

3. Signal Processing element

It takes the output of signal conditioning element as an input and gives an output which is suitable for the presentation.

Ex: 1. Analog to digital converter (A-D-C)

2. Micro Computer

4. Data Representation

It takes the output of signal processing element as an input and gives an output which is easily observed/measured by the observer.

Ex: 1. Pointer scale indicator

- 2. Alpha Numeric Display
- 3. Visual Display
- Ex. of Measurement system:

Weight Measuring System,

Sensing Element,

Bridge Circuit: Change in Resistance to electrical form,

Amplifier mV-V, A-D-C, Micro Computer visual Display, Visual Display.

2. Static Characteristics

Static Characteristics means the input is not going to be changed or, changed very shortly.

Statistical Characteristics: those characteristics which can be exactly quantify by any particular element.

Ex: Repeatability

Tolerance level

Systematic Characteristics: Those characteristics which can be exactly quantified by a particular element.

1.	Dead Space	7.	Non-Linearity
2.	Threshold	8.	Hysteresis
3.	Lag	9.	Resolution
4.	Range	10.	Sensitivity
5.	Span	11.	Wear and ageing
6.	Linearity	12.	Error Band

Systematic Characteristics:

- 1. *Dead Space:* It is the range of input for which there is no change in output.
- 2. *Threshold*: If dead space occurs at the beginning of the measurement then that is called threshold.
- 3. *Lag*: It is the time taken by an element or, Instrument to respond to an activity.

4. Range:

For minimum input range *I*_{MIN} For Minimum

For Minimum output range O_{MIN}

For Maximum input range I_{MAX} For Maximum output range O_{MAX}

5. *Span:* Span is the maximum variation between input and output.

Input Span= $I_{span} = I_{MAX} - I_{MIN}$

Output Span= $O_{span} = O_{MAX} - O_{MIN}$

6. *Linearity:* The variation of input and output makes a straight line.

$$O - O_{MIN} = \left(\frac{O_{MAX} - O_{MIN}}{I_{MAX} - I_{MIN}}\right) \cdot \left(I - I_{MIN}\right)$$

 $O_{IDEAL} = KI + a$

$$K = \frac{O_{MAX} - O_{MIN}}{I_{MAX} - I_{MIN}}$$

7. *Non-linearity:* It is the difference between linear line and the actual line.

$$N(I) = O_{actual} - O_{linear}$$
$$O(I) = N(I) + KI + a$$
$$\hat{N} \rightarrow Max Non - linearity in FSD$$

Percentage of Full Scale Deflection (FSD)

$$\hat{N} = \frac{\hat{N}}{O_{MAX} - O_{MIN}} \times 100\%$$

8. *Sensitivity:* The rate of change of output with respect to input.

$$\frac{dO}{dI} = K \rightarrow Linearity$$
$$\frac{dO}{dI} = K + \frac{dN(I)}{dt} \rightarrow Non - Linearity$$

Environmental Effect

- 1. Modifying input (I_M) Changes the sensitivity or, Slope k
- 2. Interfering input (I_I) Changes the intercept 'a'.

$$O(I) = N(I) + KI + a$$

$$O(I) = N(I) + (K + K_M I_M)I + a + K_I I_I$$

$$\Rightarrow O(I) = N(I) + KI + K_M I_M I + a + K_I I_I$$

 K_M and K_I are environmental Coupling constants.

9. *Hysteresis:* For the given value of input the output may be different whether the input is increasing or, decreasing.

Ex: Backlash: Conversion of rotational movement to linear movement

10. *Resolution:* It is defined as the largest change in the input that can occur without any corresponding change in output.

Ex: Potentiometer resistance change with respect to distance.

11. Accuracy:

A = Measured Value – True value

12 *Wear and ageing:* These effects can cause the characteristic of an element. E.g. 'K' and 'a' to change slowly but systematically throughout its life.

Ex: Stiffness of the spring

 $K(t) = K_0 - bt$

 $K_0 \rightarrow$ initial Stiffness

 $b \rightarrow \text{constant},$

 $K(t) \rightarrow$ Stiffness of the spring.

13 Error Band:

P (O) = Probability Function

In rectangular form

$$\begin{split} P(O) &= 1, \quad O_{IDEAL} - h \leq 0 \leq O_{IDEAL} + h \\ &= 0, \quad 0 \leq O_{IDEAL} - h \\ &= 0, \quad 0 \geq O_{IDEAL} + h \end{split}$$

In Gaussian form

$$P(O)_{x_1, x_2} = \int_{x_1}^{x_2} P(x) \, dx$$

 $P(x) \rightarrow$ Probability density function

Symbols

Addition

Scalar Multiplication

Variable Multiplication

Function

Integration

Differentiation

Generalised Model of system element.

Statistical Characteristics:

1. *Repeatability:* It is the property of an element to repeat itself give same output for same input when the input is applied.

To centralise the mean value the Gaussian density function is used

$$P(x) = \frac{1}{\sigma\sqrt{2\pi}} \exp\left[\frac{-(x-\bar{x})^2}{2\sigma^2}\right]$$

$$\sigma \rightarrow \text{Standard deviation}$$

Where,
$$\overline{x} \rightarrow Mean \ Value$$
$$\overline{x} = \int_{-\infty}^{\infty} x P(x) dx$$

Variance = σ^2

$$\sigma^{2} = \int_{-\infty}^{\infty} (x - \bar{x}) P(x) dx$$
$$O = KI + a + N(I) + K_{M} I_{M} I + K_{I} I_{I}$$
$$\Delta O = \left(\frac{\partial O}{\partial I}\right) \Delta I + \left(\frac{\partial O}{\partial I_{M}}\right) \Delta I_{M} + \left(\frac{\partial O}{\partial I_{M}}\right) \Delta I_{I}$$

$$y = a_1 x_1 + a_2 x_2 + a_3 x_3$$
$$\sigma = \sqrt{\left(a_1^2 \sigma_1^2 + a_2^2 \sigma_2^2 + a_3^2 \sigma_3^2\right)}$$

Standard deviation of output for a single element

$$\sigma_{o} = \sqrt{\left(\frac{\partial_{O}}{\partial_{I}}\right)^{2} \sigma_{I}^{2} + \left(\frac{\partial_{O}}{\partial_{I_{M}}}\right)^{2} \sigma_{I_{M}}^{2} + \left(\frac{\partial_{O}}{\partial_{I_{I}}}\right)^{2} \sigma_{I_{I}}^{2}}$$

The Mean value of output or a single element is

$$\overline{O} = K\overline{I} + a + N(\overline{I}) + K_M \overline{I}_M \overline{I} + K_I \overline{I}_I$$

Identification of Static Characteristics:

Callibration: -

- The static characteristics of an element can be found experimentally by measuring corresponding values of the input 'I', the output 'O' and the environmental input (I_M, I_I). When I either at a constant value or changing slowly. This type of experiment is referred to as Callibration
- The instruments and techniques used to quantify the variables I, O, I_M and I_I are referred to as standard.
- The true value of a variable is the measured value obtained with a standard of ultimate accuracy.

NPL \rightarrow National Physical Laboratory

There are three steps to measure a parameter:

(i)
$$O v_{s} I |_{I_{M}=I_{I}=0}$$

(ii) $O v_{s} I_{M} I_{I} |_{I=Constant}$
 $I = (I_{MIN} + I_{MAX})/2$
 $K_{M} = \frac{\Delta O}{\Delta I_{M}} = \left(\frac{2}{I_{MIN} + I_{MAX}}\right)$
 $O = KI + a + N(I) + K_{M} I_{M} I + K_{I} I_{I}$ (1)
 $O + \Delta O = KI + a + N(I) + K_{M} (I_{M} + \Delta I_{M}) I + K_{I} I_{I}$ (2)

Subtract (1) from (2)

$$\Delta O = K_M \Delta I_M I$$
$$K_M = \frac{\Delta O}{\Delta I_M I} \Longrightarrow K_M = \frac{\Delta O}{\Delta I_M} \left(\frac{2}{I_{MIN} + I_{MAX}}\right)$$

Interfering I/P with known value of K_I

$$O = KI + a + N(I) + K_M I_M I + K_I I_I$$
⁽¹⁾

$$O + \Delta O = KI + a + N(I) + K_M (I_M + \Delta I_{M,I}) I + K_I (I_I + \Delta I_{I,M})$$
(2)

Subtracting (1) from (2)

$$\Delta O = K_M \Delta I_{M,I} I + K_I \Delta I_{I,M}$$

$$\Rightarrow K_M \Delta I_{M,I} I = \Delta O - K_I \Delta I_{I,M}$$

$$\Rightarrow K_M = \frac{\Delta O - K_I \Delta I_{I,M}}{\Delta I_{M,I} I}$$

$$\Rightarrow K_M = \left(\frac{\Delta O}{\Delta I_{M,I}} - K_I\right) \left(\frac{2}{I_{MIN} + I_{MAX}}\right)$$

3. Dynamic Characteristics:

$dT \rightarrow$ Change in temp.	$C \rightarrow$ Specific heat
W→Inflow	dt \rightarrow Change in time

Characteristics of sensor is defined by heat balance equation.

Unit

 $U = watt/m^2 \cdot c$

U= Overall heat transfer co-efficient

- A= Effective area of sensor
- M=Mass of sensor

C=Specific heat of sensor material $C=J/kg \cdot c$

 T_F = Temperature of Fluid

T= Temperature of sensor

when
$$t < 0$$
, $T_F = T$
 $t = 0$, $T_F \rightarrow T_F + \Delta T_F$
 $T \rightarrow T + \Delta T$
 $W = UA(T_F + \Delta T_F - T - \Delta T)$
 $MC \frac{d(T + \Delta T)}{dt} = UA(T_F + \Delta T_F - T - \Delta T)$
 $\Rightarrow UA(T_F - T) + UA\Delta T_F - UA\Delta T = MC \frac{dT}{dt} + MC \frac{d\Delta T}{dt}$
 $\Rightarrow UA\Delta T_F - UA\Delta T = MC \frac{d(\Delta T)}{dt}$

$$\Rightarrow UA(\Delta T_F - \Delta T) = MC \frac{d(\Delta T)}{dt}$$
$$\Rightarrow \Delta T_F - \Delta T = \frac{MC}{UA} \frac{d(\Delta T)}{dt}$$
$$\Rightarrow \frac{MC}{UA} \frac{d(\Delta T)}{dt} + \Delta T = \Delta T_F \quad \Rightarrow \text{ Linear 1st order differential equation for thermal system}$$

$$\frac{MC}{UA} = \tau$$
(time constant)

$$\Rightarrow \tau . \frac{d(\Delta T)}{dt} + \Delta T = \Delta T_F$$

Units
$$\frac{MC}{UA} = \frac{\frac{k/g J / \frac{k}{g} \circ C}{w/m^2 \circ C}}{\frac{w}{m^2} \circ C} = \frac{J}{w} = \sec t$$

For Fluidic System

$$\tau = \frac{AR_F}{\rho g} = \text{time constant}$$

For Electrical System

Time Constant(τ) = RC

For Mechanical System

 $\lambda \frac{dx}{dt}$ $\lambda = damping \ co - efficient$ $k = Stiffness \ of \ spring$

$$F = kx$$

$$\Rightarrow F - kx = \lambda \frac{dx}{dt} (when there is a change in displacement)$$

$$F + \Delta F - k(x + \Delta x) = \frac{\lambda d(x + \Delta x)}{dt}$$

$$\Rightarrow F - kx + \Delta F - k\Delta x = \lambda \frac{dx}{dt} + \frac{\lambda d(\Delta x)}{dt}$$

$$\Delta F - k\Delta x = \frac{\lambda d(\Delta x)}{dt}$$

$$\Rightarrow \frac{\lambda d(\Delta x)}{dt} + k\Delta x = \Delta F$$

$$\Rightarrow \frac{\lambda}{k} \frac{d(\Delta x)}{dt} + \Delta x = \frac{\Delta F}{k}$$

$$\tau = \frac{\lambda}{k} = \text{time constant}$$

-

Property	Thermal	Electrical	Fluidic	Mechanical
τ	$\frac{MC}{UA}$	RC	$\frac{AR_{F}}{\rho g}$	$\frac{\lambda}{k}$
R	$\frac{1}{UA}$	R	\mathbf{R}_{F}	λ
С	МС	С	$\frac{A}{\rho g}$	$\frac{1}{k}$

$$\Rightarrow \tau \, \frac{d(\Delta T)}{dt} + \Delta T = \Delta T_F$$

Taking laplace Transformon both sides

$$\Rightarrow \tau \left[S\Delta \overline{T}(S) - \Delta T(0-) \right] + \Delta \overline{T}(S) = \Delta \overline{T}_F(S)$$
$$\Rightarrow \tau S\Delta \overline{T}(S) + \Delta \overline{T}(S) = \Delta \overline{T}_F(S)$$
$$\Rightarrow \Delta \overline{T}(S) [\tau S+1] = \Delta \overline{T}_F(S)$$
$$\frac{\Delta \overline{T}(S)}{\Delta \overline{T}_F(S)} = \frac{1}{\tau S+1}$$

G(S) = Transfer Function

 $G(S) = \frac{LaplaceTransform of \ change \ in \ output \ temp.}{LaplaceTransform of \ change \ in \ input \ temp.}$

Static Characteristics is given by the equation

$$O = KI + a + N(I) + K_M I_M I + K_I I_I$$

I₀ \rightarrow Steady state input

 $\overline{1+\tau S}$

$$\left. \frac{\partial O}{\partial I} \right|_{I_0} = K + K_M I_M + \frac{\partial N(I)}{\partial I}$$

Module-II

Sensing Elements

1. Resistive sensing element

- Potentiometer
- Thermistor
- Helipot
- Resistance Thermometer or, RTD (RTD- Resistance temp. Detector)
- Strain Gauge

It can sense temperature, strain, displacement, heat, loss etc.

$$R = \rho \frac{L}{A}$$

Potentiometer [POT]

Passive transducer: Those transducer which requires external power for energy conversion is known as passive transducer.

Active transducer: Those transducer which don't require external power sources for energy conversion, known as active transducer.

Ex: - Piezo-electric Crystal, Thermocouple

Potentiometer is used for displacement measurement.

- Strain \rightarrow Strain Gauge
- Temperature \rightarrow Thermistors

It is a potential divider called POT and it is a passive sensing element.

It measures linear as well as angular displacement.

(2) Rotational POT

Schematic Diagram:

d→length covered by the wiper *dT*→Total length of the resistive element R_P →Total Resistance of the POT *d/dt*=*x*=Fractional Displacement

$$E_{th} = \frac{e_i \times R_p x}{R_p}$$

 $E_{th} = e_i . x$

$$R_{Th} = R_p (1-x) \parallel R_p x = \frac{R_p (1-x) \cdot R_p x}{R_p} = R_p \cdot x \cdot (1-x)$$

$$V_L = \frac{E_{th}R_L}{R_{th} + R_L} = \frac{e_i x R_L}{R_p x(1-x) + R_L}$$

$$V_L = \frac{e_i x R_L}{R_p x (1-x) + R_L} \rightarrow Non - Linear Equation$$

when R_L is large linearity can be obtained

$$V_{L} = \frac{e_{i}xR_{L}}{R_{L}\left[\frac{R_{p}}{R_{L}}x(1-x) + R_{L}\right]} \Rightarrow V_{L} = \frac{e_{i}x}{\frac{R_{p}}{R_{L}}x(1-x) + 1}$$

When $R_{L} = \infty$
 $V_{L} = e_{i}x \rightarrow Linear property of potentiometer$

 \rightarrow POT are of two types: -

- i) *Wire Wound type*: In this type 0.01 mm diameter of platinum or nickel alloy each wounded over an insulated former.
- ii) *Plastic thin film type*: These have zero resolution but have higher temperature co-efficient of resistance. This covers displacement span from 25-250mm with Non-linearity up to $\pm 0.04\%$ and resistance value from 500 ohm- 80 K ohm.

Resistance Thermometer (RTD)

It is made up of metal like Nickel, Cr and Pt.

 \rightarrow Platinum (Pt) is suitable metal for construction of RTD's because it is chemically inert and the range of temperature it can withstand is very large.

 \rightarrow Characteristics of Pt. with respect to temperature is linear. General relationship between change in resistance and change in temperature of any metal is given by

$$R_{T} = R_{0} [1 + \alpha T + \beta T^{2} + \Upsilon T^{3} + \dots]$$

$$R_{T} = \text{Resistance at } T \ ^{\circ}C$$

$$R_{0} = \text{Resistance at } 0 \ ^{\circ}C$$

$$\alpha, \beta, \Upsilon = \text{Temperature co-efficient of resistance of the metal}$$

 $\rightarrow \beta$, Υ are Non-linear terms and values are very small.

$$R_T = R_0 [1 + \alpha T]$$

 \rightarrow A typical Platinum element has R₀=100 ohm and R₁₀₀=138.5 ohm

 \rightarrow [R₁₀₀-R₀]= Fundamental Interval

Requirement of Conductivity material to be used in RTD:

- 1) A change in resistance of material for unit change in temp should be as large as possible (sensitivity is High)
- 2) Resistance of material should have continuous and stable relationship with temperature.

Thermistor (Thermal Resistor)

 \rightarrow These are resistive sensing element made up of semiconductor material used for measurement of temperature.

 \rightarrow The material used are metallic oxide of Cu, Ni, Fe, Co, Cr, Mn etc.

 \rightarrow They have very high negative (-ve) temperature co-efficient of resistance as large as several percent per degree Celsius, resistance of thermistor at room temperature may decrease as much as 5% per degree rise in temperature.

 \rightarrow Resistance-Temperature characteristics is given by the equation:

$$R_{\theta} = R_{\theta_1} e^{\beta} \left[\frac{1}{\theta} - \frac{1}{\theta_1} \right]$$

Where, Θ = Temperature to be measured in Kelvin

 Θ_1 = Reference Temperature

 R_{Θ} =Resistance of temperature after rise from Θ_{l} to Θ

 $R_{\Theta I}$ =Resistance at reference temperature

 β = Constant depends on material used for thermistor and

Its value is (3500-4500) k

Advantages:

- 1) Small size and low cost
- 2) Fast Response over Narrow temperature range
- 3) Good Sensitivity in the NTC (-ve temp. Co-efficient) region.

Disadvantages:

- 1) Non-linearity in resistance vs. temperature characteristics.
- 2) Unstable for wide temperature range.

Strain Gauge (Piezo-Resistive Gauge)

 \rightarrow Strain Gauge is a metal of semiconducting element whose resistance changes when it is under strain.

Longitudinal Strain= $\frac{(l+\Delta l)-l}{l} = \frac{\Delta l}{l} = e_L$

Transverse Strain= $\frac{(W + \Delta W) - W}{W} = \frac{-\Delta W}{W} = -e_T$

Elastic Modulus= $\frac{Stress}{Strain}$

 \rightarrow When it is linear then it is called Young's Modulus.

Poisson Ratio:

 \rightarrow It is the ratio of transverse Strain by Longitudinal Strain

$$v = -\frac{e_T}{e_L} \Longrightarrow e_T = -ve_L$$

Piezo-resistive Effect:

 \rightarrow The change in resistivity of material when it is under strain is called Piezo resistive effect.

Derivation of Gauge Factor:

$$\begin{split} R &= \rho \frac{L}{A} \\ \Delta R &= \left(\frac{\partial R}{\partial L}\right) \Delta L + \left(\frac{\partial R}{\partial A}\right) \Delta A + \left(\frac{\partial R}{\partial \rho}\right) \Delta \rho \\ &= \frac{\rho}{A} \Delta L + \frac{\rho L}{-A^2} \Delta A + \frac{L}{A} \Delta \rho \\ A &= w \times t \\ \Delta A &= \frac{\partial A}{\partial w} \cdot \Delta w + \frac{\partial A}{\partial t} \cdot \Delta t \\ &= t \cdot \Delta w + w \cdot \Delta t \\ \frac{\Delta A}{A} &= \frac{\Delta w}{w} + \frac{\Delta t}{t} = e_T + e_T \\ &\Rightarrow \frac{\Delta A}{A} = 2e_T \\ \Delta R &= \rho \frac{\Delta L}{A} - \frac{\rho L}{A} 2e_T + \frac{L}{A} \Delta \rho \\ \frac{\Delta R}{R} &= \frac{\Delta L}{A} - 2e_T + \frac{\Delta \rho}{\rho} \\ \frac{\Delta R}{R} &= e_L - 2(-ve_L) + \frac{\Delta \rho}{\rho} = e_L + 2ve_L + \frac{\Delta \rho}{\rho} \end{split}$$

$$\Rightarrow \frac{\Delta R}{R} / e_L = 1 + 2\nu + \frac{\Delta \rho}{e_L \rho}$$

Gauge Factor is the change in unit resistance per strain

 \rightarrow For most of the metals Poisson ratio is approximately equals to 0.3 and the Piezo-resistive effect is 0.4.

 \rightarrow So, metal gauge factor is around 2.

 \rightarrow For semiconductor strain gauge Piezo-resistive effect term is very large. So gauge factor (GF) of Semiconductor strain gauge is very large. Hence Sensitivity is high for semiconductor type strain gauge.

 \rightarrow Disadvantages of semiconductor strain gauge is its resistance decreases with increase in temperature and consequently there is a decrease in gauge factor of strain gauge i.e. decrease in sensitivity.

2. Capacitive Sensing Elements

 \mathcal{E}_0 =Permittivity of free space $(8.85 \times 10^{-12} F/m)$

 \mathcal{E}_r =Permittivity of relative medium

a) Variable displacement Sensor

b) Variable Area Sensor

W=width of the plate

$$e = \frac{\varepsilon_0 \varepsilon_r (A - wx)}{d}$$

c) Variable Di-electric type sensor

$$C = C_1 + C_2$$

$$C = \frac{\varepsilon_0 \varepsilon_{r_1} wx}{d} + \frac{\varepsilon_0 \varepsilon_{r_2} w(l - x)}{d}$$

$$\Rightarrow C = \frac{\varepsilon_0 w}{d} \left[\varepsilon_{r_2} l - x(\varepsilon_{r_2} - \varepsilon_{r_1}) \right]$$

d) Capacitive Pressure Sensor

$$y = \frac{3}{16} \cdot \frac{(1 - v^2)}{Et^3} (a^2 - r^2) \rho$$

$$\frac{\Delta C}{C} = \frac{(1-v^2)a^2}{16Edt^3}$$

Where, $P \rightarrow Applied$ Pressure

 $\Delta C \rightarrow$ Change in Capacitance

 $a \rightarrow Radius of the Diaphragm$

 $r \rightarrow Radius$ in which we are applying pressure to generate displacement

t \rightarrow Thickness of Diaphragm

 $E \rightarrow$ Youngs modulus of Material

 $v \rightarrow$ Poisson's Ratio

 $C \rightarrow Original Capacitance of capacitor before application of pressure$

e) Three Plate Differential or, Push Pull Displacement Sensor

For avoiding non-linearity we have to incorporate this with a bridge circuit.

f) Capacitive level Sensor

g) Thin Film Capacitance Humidity Sensor

 \rightarrow If all the H₂0 molecule is not going to be absorbed by the polymer layer, then it won't go down.

 $\Delta C \propto$ Relative Humidity

C = (375+1.7 RH) pF

 $RH \rightarrow Relative Humidity$

pF→Pico Farad

 \rightarrow The humidity sensor has an input range of 0 to 100% RH and a capacitance of 370 pico-Farad which RH is 0% and a linear humidity of 1.7pF per percent RH.

 \rightarrow The di-electric medium is characterised by a word called **loss tangent**.

$$\tan \delta = \frac{1}{\omega CR}, Q = R\sqrt{\frac{L}{C}}$$

3. Inductive Sensing Element

Variable Inductance/reluctance

Displacement Sensor

 $mmf = \phi \times R$ (R \rightarrow Reluctance)

$$\phi = \frac{ni}{R} , \ N = \frac{n^2 i}{R}$$

$$L = \frac{n^{2}i}{R_{i}} = \frac{n^{2}}{R}, \text{ Inductance(L)} = \frac{Total flux}{Current}$$
$$R = \frac{l}{\mu\mu_{0}A}$$

Where, l= Total length of flux path

A=Cross-sectional area of flux path

 μ_0 =Permeability of Free space

$$\mu_0 = 4\pi \times 10^{-7} \frac{Henery}{m}$$

 μ =Relative Permeability

 $R_{total} = R_{core1} + R_{air gap} + R_{core2}$

Variable inductance/reluctance displacement Sensor

- Variable reluctance displacement Sensor
- Push pull or, Differential displacement sensor

 $R_{total} = R_{core} + R_{air gap} + R_{armature}$

$$R_{core} = \frac{\pi R}{\mu_0 \mu_c \pi r^2} = \frac{R}{\mu_0 \mu_c r^2}$$

$$R_{air gap} = \frac{2d}{\mu_0 \pi r^2}$$

$$R_{armature} = \frac{2R}{\mu_0 \mu_A 2 r t_r} = \frac{R}{\mu_0 \mu_A r t_r}$$

$$R_{total} = \frac{R}{\mu_0 \mu_c r^2} + \frac{2d}{\mu_0 \pi r^2} + \frac{R}{\mu_0 \mu_A r t_r}$$

$$= \frac{R}{\mu_0 r} \left[\frac{1}{\mu_c r} + \frac{1}{\mu_A t_r} \right] + \frac{2d}{\mu_0 \pi r^2}$$

$$R_T = R_0 + kd$$
$$\implies R_0 = \frac{R}{\mu_0 r} \left[\frac{1}{\mu_c r} + \frac{1}{\mu_A t_r} \right]$$

$$k = \frac{2}{\mu_0 \pi r^2}$$
 [k value depends upon the structure of the material]

$$L_T = \frac{n^2}{R_T} = \frac{n^2}{R_0 + k \cdot d} = \frac{\frac{n^2}{R_0}}{\frac{R_0}{R_0} + \frac{k \cdot d}{R_0}} = \frac{L_0}{1 + \alpha d}$$

$$\left| \therefore L_0 = \frac{n^2}{R_0} \text{ and } \alpha = \frac{k}{R_0} \right|$$

L₀→Inductance of sensor at zero air gap, k & α depends upon the structure of the sensor.

$$L_1 = \frac{L_0}{1 + \alpha (a - x)}, \quad L_2 = \frac{L_0}{1 + \alpha (a + x)}$$

 \rightarrow In order to avoid non-linearity, we design this type of sensor. We have to incorporate this with bridge circuit.

LVDT (Linear Variable Differential Transformer)

 \rightarrow The soft iron core makes a flux linkage between the primary winding and the two secondary winding.

 \rightarrow The two secondary windings are identically placed either side of the primary windings.

 \rightarrow Number of turns of two secondary windings are equal.

 \rightarrow The core is made up of high permeability (unwanted fizzer component) Nickel iron which is having low harmonics, low null voltages and is of high sensitivity.

 \rightarrow The core is slotted longitudinally to reduce the eddy current loss. (Current due to the back e.m.f.)

LVDT Electrical equivalent Circuit:

 \rightarrow The two secondary coils are connected in series so as to get one output.

 \rightarrow Phase sensitive demodulator- to produce positive voltage and negative voltage.

Note

Low Pass Filter (LPF)

 \rightarrow The Band width B.W. of LPF is less than the sampling frequency to filter out the carrier signal and more than maximum frequency not to filter out the measurement signal.

 \rightarrow Frequency of AC applied to primary winding is in the range of 50Hz-20KHz. The Primary winding is excited by AC source produce an alternating magnetic field which includes A.C voltage in the two secondary winding.

 \rightarrow To represent the output from the two secondary's in to a single voltage, the two secondaries are connected in series opposition.

Reason for Occurrence of Residual Voltage in LVDT

- This may be due to an account of presence of harmonics in the input supply voltage and also the harmonics present or produced in the output voltage.
- The Residual voltage may be due to either an incomplete magnetic or, electrical unbalance.

4. Electromagnetic Sensing Element

\rightarrow Eg: - Velocity Sensor

Variable Reluctance Tacho generator for measurement of angular velocity

 \rightarrow These sensors are based on Faraday's laws for measurement of linear and angular velocity.

 \rightarrow The induced emf in a conductor depends on the rate of change of flux linking with conductor.

$$E = -\frac{dN}{dt} \quad N \to Total \ flux$$

Construction:

 \rightarrow It consists of a toothed wheel of ferro-magnetic material and a coil wounded on a permanent magnet extended by a soft iron pole piece.

 \rightarrow When the tooth is close to the pole piece reluctance is minimum but the reluctance increment with the tooth moves away from the pole piece.

 \rightarrow Reluctance is maximum when the gap is adjustant to the pole piece and falls again as the next tooth approaches to pole piece.

The total flux linked by a core of 'n' turn coil is

$$N(\theta) = a + b \cos m\theta$$

Where, a= mean flux
b= amplitude
m= no. of teeth
$$E = -\frac{dN}{dt} = -\frac{dN}{d\theta} \times \frac{d\theta}{dt}$$
$$= bm \sin(m\theta) \frac{d\theta}{dt}$$
$$= bm \sin(m\theta) \omega_r$$
$$E = bm \omega_r \sin(m\omega t) \quad [\because \theta = \omega t]$$
$$\widehat{E} = bm \omega_r \quad f = \frac{m\omega}{2\pi}$$

5. Thermoelectric Sensing element (Thermocouple)

Seeback effect: - It states that when two different metal of different composition are joined to form two junction and if the temperature of the junction is changed then potential difference will be developed across the junction and this potential difference is called Seeback emf.

$$E_T^{AB} = a_1 T_1 + a_2 T_2^2 + a_3 T_3^3 + \dots$$

Where, $a_1, a_2, a_3 \rightarrow$ Constants which depends on the type of metals

 \rightarrow *Thermocouple:* - A thermo couple is constructed when two dissimilar metal of different composition are joined to form a close circuit consisting of two junction J₁ and J₂ and the two junctions are maintained at different temp. T₁ and T₂ respectively.

 \rightarrow *Hot Junction/ Measuring Junction:* - This junction is inserted into the system for measurement of the process temperature.

 \rightarrow *Cold Junction/ Reference Junction:* -This Junction is usually kept at reference temperature of 0 °C for most industrial applications.

$$E_{T_1T_2}^{AB} = a_1(T_1 - T_2) + a_2(T_1^2 - T_2^2) + a_3(T_1^3 - T_2^3) + \dots$$

 T_1 = Temperature of Measuring Junction.

T₂= Temperature of Reference Junction.

Laws of Thermocouple: -

 \rightarrow It states that the emf of a given thermocouple depends only on the temperature of the junction and independent of the wire connecting the junction.

 \rightarrow This law states that if a 3rd metal is introduced into A (or B) and the two new junctions are at same temperature T₃, then emf of the thermocouple is unchanged.

Law-III

 \rightarrow This law states that if a 3rd metal 'C' is inserted between A and B at either junction. And the new junction AC or BC at the same temperature (T₁ or T₂), then the emf is unchanged.

 \rightarrow Law of intermediate metal

$$E_{T_1T_2}^{AB} = E_{T_1T_2}^{AC} + E_{T_1T_2}^{CB}$$

Law-V

 \rightarrow Law of intermediate Temperature

$$E_{T_1T_2}^{AB} = E_{T_1T_2}^{AC} + E_{T_1T_2}^{CB}$$

Lead Compensation

 \rightarrow The use of extra lead in a thermocouple for compensating the changing output voltage of the thermocouple due to temperature variation is called lead compensation.

 \rightarrow The extra leads used for lead compensation may be of same material of thermocouple or, of different material having the same thermal conducting properties of the metal used.

Installation Problem

- Temperature indication too low with a very thin thermocouple.
- Varying temperature indication with proper operation.
- Temperature indication error increases with increasing temperature (low indication).
- Large deviations of the temperature indication from the default values.
- Temperature indication changes over the course of time.
- Temperature indicating instrument shows room temperature.
- Negative temperature indication.
- Temperature indication error in the range of 20-25 °C
- Temperature indication even when thermocouple is disconnected.

Reference Junction Compensation of Thermocouple: -

 $T_1=100, T_2=0, a_1=4$ $E=a_1 (T_1-T_2) = 4(100-0) = 400 mV$

Case-I

Case-II

 $T_1=100, T_2=1, a_1=4$ $E=a_1 (T_1-T_2) = 4*99 = 396 mV$

So error = 4mV

→Due to change in atmospheric temperature the reference junction temperature T_2 will be changed and there will be a corresponding change in output voltage of the thermocouple. To compensate this change in output voltage with atmospheric temperature variation is to be compensated by introducing a 2nd source of emf ET₂,0 in series with the thermocouple output voltage (ET₁,T₂).

$$ET_1,0 = ET_1,T_2 + ET_2,0$$

 \rightarrow Metal resistance thermometer is incorporated to bridge circuit will sense the change in temperature at the reference junction and giving an output voltage signal proportional to the reference junction temperature. So output of bridge circuit should be equal to zero.

 \rightarrow Output of bridge circuit incorporating thermometer or, RTD is given by:

$$V_{out} = V_s \, \frac{R_2}{R_3} \, \alpha T_2$$

Where, α = resistance temperature co-efficient of RTD

Peltier Effect

 \rightarrow This is the reverse of see-back effect when the potential difference is applied across the two junction of thermocouple, one junction of thermocouple will be heated and junction temperature will be increased and other junction temperature will be decreased.

General Construction: -

IC Temperature Sensor

→Small size.

 \rightarrow No compensation circuit is required i.e. it is already present inside it.

 \rightarrow These IC generate electrical output proportional to the temperature. The sensor works on the principle that the forward voltage of a silicon diode depends on its temperature.

→Voltage Temp. Characteristics:

$$V_F = \frac{KT}{e} \ln \frac{I_F}{I_S}$$

Where, T=Ambient temp in K

K=Boltzmann Constant =1.3867*10⁻²³ J/k

E= Charge of electron

IF=Forward Current

 \rightarrow Two diodes are used to avoid saturation current.

 \rightarrow IC temperature sensors are available in both voltage and current output configuration.

 \rightarrow The current output units are usually set for an output change 1µA per Kelvin while the voltage output configuration generates 10mV per K.

LM 335

 \rightarrow It operates as a two terminal Zener diode with an output voltage of 10mV/K.

→Temperature Range is -55 °C to 125 °C.

 \rightarrow It gives linear output.

→Current range 400 μ A < I_Z < 5mA [I_Z→Zener diode].

Device Name	Temp. range	Use
LM 135	-55 °C to 150 °C	Defence
LM 235	-45 °C to 125 °C	Industrial
LM 335	-45 °C to 100 °C	Commercial

LM 35

- →Temperature Range is -55 °C to 150 °C
- \rightarrow Its output voltage of 10mV/ °C

 \rightarrow It gives a nearly linear output characteristics.

 \rightarrow It behaves as a three terminal reference rather than a two terminal Zener powered by a 4V to 20V applied to 3rd terminal. But +ve and –ve supply with a pull down resistance are necessary to operate in near or below 0 °C.

AD 592

 \rightarrow It is a 2-terminal device that acts like a constant current element passing a constant current in μ A equal to absolute temperature.

→Temperature range -25 $^{\circ}$ C to 105 $^{\circ}$ C.

→Output Current range 1 μ A/K.

6. Elastic Sensing Element

 \rightarrow It converts an input force into an output displacement.

 \rightarrow It is commonly used for measuring torque, pressure, acceleration etc.

Burdon tube

 \rightarrow It is used for pressure measurement.

 \rightarrow These are of various types

- C-type
- Spiral type
- Helical type

 \rightarrow The Burdon tubes are made out of an elliptically flattered tube beat in such a way as to produce the different shape.

 \rightarrow One end of the tube is sealed and other is open.

 \rightarrow When the fluid whose pressure is to be measured enters the tube there tends to straighten out an account of the pressure applied.

 \rightarrow This causes a movement of free end and displacement of this end is amplified through a mechanical linkage.

 \rightarrow The amplified displacement of the free end may be used to move a pointer on scale calibrated in terms of applied pressure.

 \rightarrow Burdon tubes are made up of different materials which includes brass, alloy steel, stainless steel, bronze, phosphorous bronze, beryllium copper, monel etc.

Monel \rightarrow High pressure measurement

 \rightarrow Phosphorous bronze is used in low pressure application where the atmosphere is noncorrosive, while in application where corrosion and/or high pressure is a problem stainless steel or, Monel are used.

Advantages: -

 \rightarrow Low Cost, Simple Construction.

 \rightarrow Wide variety of ranges, high accuracy especially in relation to cost.

Disadvantages: -

 \rightarrow Low spring gradient.

 \rightarrow Susceptible to vibration and hysteresis.

 \rightarrow Susceptible to electric shock.

Bellows

 \rightarrow Bellow Convert pressure to displacement.

 \rightarrow Metallic bellows is a series of circular parts of metal welded together (Bronze or alloy)

 \rightarrow The bellow are made up of an alloy which is ductile, has high strength and retains its properties over long use that has very little hysteresis effect.

 \rightarrow Relation between the applied pressure and displacement is given by:

$$d = \frac{0.453PbnD^2\sqrt{1 - v^2}}{Et^3}$$

Where, P=Pressure

b=Radius of each corrugation

n=no. of Semiconductor corrugation

t=thickness of wall

D=Mean diameter

E=Young's Modulus of Electricity

V =Poisson's ratio

Advantages

 \rightarrow Cost is moderate, able to deliver high force.

 \rightarrow It is adaptable for absolute and differential pressure.

 \rightarrow It is good in low to moderate pressure range.

Disadvantages

 \rightarrow It needs ambient temperature compensation

 \rightarrow It is unsuitable for high Pressure.

Diaphragm

 \rightarrow Diaphragm is pneumatic sensor which convert pressure to displacement.

 \rightarrow Diaphragm is nothing but an elastic membrane on which pressure is applied and the corresponding displacement is measured.

 \rightarrow For this type of diaphragm, the relationship between the applied pressure and displacement is given by:

$$P = \frac{256Et^3d_m}{3(1-v^2)D^4} N/m^2$$

Where, E=Young's Modulus

t=thickness of diaphragm

d=diameter of the diaphragm

R=Radius of the diaphragm

V =Poisson's Ratio

d_m=deflection at centre of diaphragm corrugated environment, we can also use rubber.

Practical Elastic Sensor

1) Cantilever load cell

$$e = \frac{b(l-x)F}{wt^2\varepsilon}$$

Where, $e \rightarrow$ Total force induced on applying force

→ The applied force causes the cantilever to bend so that top surface experiences a tensile strain and the strain gauge one and there will experience an increase in resistance.

$$R_1 = R_3 = R_0 + \Delta R$$

Where, R_0 = initial resistance at t (-0)

→ Strain gauge 2 and 4 experience compressive strain and there will be decrease in resistance $R_2 = R_4 = R_0 - \Delta R$

$$G = \frac{\left(\Delta R \middle|_{R_0} \right)}{e}$$

$$\Delta R = GeR_0$$

$$R_{1} = R_{3} = R_{0} + R_{0}Ge$$
$$= R_{0}(1 + Ge)$$
$$R_{2} = R_{4} = R_{0}(1 - Ge)$$

 $E_{th} = V_S Ge \rightarrow Output \ voltage \ of \ bridge \ ckt.$

2) Pillar Load cell

$$E = \frac{Stress}{Strain} = \frac{F/A}{-e_L}$$

$$e_{L} = -F / AE$$

$$e_{T} = -v e_{L} = \frac{Fv}{AE}$$

$$R_{1} = R_{3} = R_{0} + \Delta R$$

$$R_{2} = R_{4} = R_{0} + \Delta R$$

$$\Delta R = GeR_{0}$$

$$R_{1} = R_{3} = R_{0} + R_{0}Ge_{T}$$

$$= R_{0}(1 + Ge_{T})$$

$$R_{2} = R_{4} = R_{0} + R_{0}Ge_{L}$$

$$= R_{0}(1 + Ge_{L})$$

$$R_{1} = R_{3} = R_{0} \left(1 + \frac{GFv}{AE} \right)$$

$$R_{2} = R_{4} = R_{0} \left(1 - \frac{GF}{AE} \right)$$

$$E_{th} = \frac{V_{S}}{2} \left(\frac{GF}{AE} \right) (1 + v) \rightarrow Output \ of \ the \ bridge \ ckt$$

Torque Sensor

 \rightarrow Torque Sensor is a 2nd order dynamic element.

$$Total \ e = \frac{T}{\pi \, S \, a^3}$$

Where, S= shear Modulus

T= Applied Torque

a=Radius of cylinder

$$R_1 = R_3 = R_0(1 + Ge)$$

$$R_2 = R_4 = R_0(1 - Ge)$$

$$E_{th} = V_S Ge$$

Module-III

 \rightarrow Signal Conditioning element measure and detect the output of resistive, capacitive and inductive sensor.

 $R_T = R_0 (1+\alpha T)$

=100. (1+10) = 1100 ohm

$$E_{th} = 10 \left[\frac{1100}{1157} - \frac{125}{125 + 136} \right] = 4.718 \text{ V}$$
$$Z_{th} = \frac{125 \times 136}{125 + 136} + \frac{1100 \times 57}{1100 + 57} = 119.325 \text{ ohm} \qquad [\text{Note: } Z_L >> Z_{th}]$$

Notes

 \rightarrow The null type Wheatstone bridge is accurate but the problem with this bridge is that the balancing even if done automatically is not instantaneous. Therefore, this bridge is unsuitable for dynamic application when the changes in resistance are applied.

 \rightarrow For measurement of rapidly changing input signal the deflection type bridge is used.

Current Sensitivity Bridge:

 \rightarrow If the output of the bridge is connected directly to a low impedance device like galvanometer or, PMMC instrument a large current flows through the meter. In this case, the bridge is called a current sensitivity bridge.

Voltage Sensitivity Bridge:

 \rightarrow In most of the application of the deflection type bridge, the bridge output is fed to an amplifier which has high input impedance and therefore the output current is zero that is connected to a CRO or, an electronic voltmeter or digital voltmeter and this is called voltage sensitive bridge.

Design of Resistive Deflection Bridge

$$E_{th} = V_S \left[\frac{R_1}{R_1 + R_4} - \frac{R_2}{R_2 + R_3} \right]$$

Replacing R_1 by temperature sensor R_I

$$E_{th} = V_S \left[\frac{R_I}{R_I + R_4} - \frac{R_2}{R_2 + R_3} \right]$$

$$E_{th} = V_S \left[\frac{1}{1 + \frac{R_4}{R_I}} - \frac{1}{1 + \frac{R_3}{R_2}} \right]$$

 \rightarrow To design a single element bridge we need to specify the 3 parameter i.e. V_S, R₄ and ratio of R₃ and R₂

When minimum case

$$V_{\max} = V_S \left[\frac{1}{1 + \frac{R_4}{R_{I_{\max}}}} - \frac{1}{1 + \frac{R_3}{R_2}} \right]$$

For balancing a bridge put $V_{min}\!=\!0$

$$V_{S}\left[\frac{1}{1+\frac{R_{4}}{R_{I_{\min}}}}-\frac{1}{1+\frac{R_{3}}{R_{2}}}\right]=0$$

$$\Rightarrow \frac{1}{1 + \frac{R_4}{R_{I_{\min}}}} = \frac{1}{1 + \frac{R_3}{R_2}}$$

$$\Rightarrow \frac{R_4}{R_{I_{\min}}} = \frac{R_3}{R_2} \longrightarrow Balanced Condition$$

 \rightarrow An important consideration is needed to limit the electrical power I²R in the sensor to a level which enables it to be dissipated as heat flow to the surroundings fluid otherwise the temperature of the sensor rise above that of the surrounding fluid thereby affecting the sensor resistance.

$$W \ge V_s^2 \left[\frac{R_1}{\left(R_1 + R_4\right)^2} \right]$$
$$W \Longrightarrow Power$$

 \rightarrow Another requirement is the need to keep the non-linearity of the overall relationship between E_{th} and current (I) with specified unit.

If $V_{min} = 0$ and V and I makes a straight line

$$V_{ideal} - V_{min} = \frac{V_{max} - V_{min}}{I_{max} - I_{min}} (I - I_{min})$$

$$\Rightarrow V_{ideal} = \frac{V_{max}}{I_{max} - I_{min}} (I - I_{min})$$

$$\Rightarrow V_{ideal} = \frac{V_{max}I}{I_{max} - I_{min}} - \frac{V_{max}I_{min}}{I_{max} - I_{min}}$$

$$N(I) = E_{th} - V_{ideal}$$

$$\widehat{N}(I) \ge \frac{E_{th} - V_{ideal}}{V_{max}} \times 100$$

$$E_{th} = V_{S} \left[\frac{1}{1 + \frac{R_{4}}{R_{I}}} - \frac{1}{1 + \frac{R_{3}}{R_{2}}} \right]$$

Under Balanced condition

$$\frac{R_4}{R_{I_{\min}}} = \frac{R_3}{R_2}$$

$$\Rightarrow R_4 = \frac{R_3}{R_2} \times R_{I_{\min}}$$

$$E_{th} = V_{S} \left[\frac{1}{1 + \frac{R_{3}}{R_{2}} \times \left(\frac{R_{I\min}}{R_{I}}\right)} - \frac{1}{1 + \frac{R_{3}}{R_{2}}} \right]$$

$$E_{th} = \left[\frac{1}{1 + \frac{R_{3}}{R_{2}} \times \left(\frac{R_{I\min}}{R_{I}}\right)} - \frac{1}{1 + \frac{R_{3}}{R_{2}}} \right]$$

$$V = \frac{1}{1 + \frac{r}{x}} - \frac{1}{1 + r}$$

$$\Rightarrow V = \frac{x}{x + r} - \frac{1}{1 + r}$$

$$V = \frac{E_{th}}{V_{S}}, \quad r = \frac{R_{3}}{R_{2}}, \quad x = \frac{R_{I}}{R_{I\min}}$$

$$V = \frac{V}{V_{S}} = \frac{V - V_{S}}{V_{S}} = \frac{V - V_{S}}{V_{S}$$

→From the graph it is found that V is zero at x =1 corresponding to the bridge being balanced at $I = I_{min}$.

Case-I

$$x = \frac{R_I}{R_{I_{\min}}} = 1$$
$$V = 0$$
$$E_{th} = 0$$

This is the required balanced condition of the bridge circuit.

 \rightarrow A bridge is balanced when $R_I = R_{Imin}$. If we consider the resistive sensor the deflection bridge is a strain gauge then, $R_I = \Delta R$

$$R_{I_{\min}} = 0$$
$$\frac{\Delta R}{R} = Ge$$

Where, G= Gauge Factor

 \rightarrow Maximum sensitivity of the bridge is achieved for x = 1

$$\frac{\partial V}{\partial x}\Big|_{x=1} \text{ where } r = 1$$

$$\frac{R_3}{R_2} = 1 , R_4 = \frac{R_3}{R_2} \times R_{I_{\min}}$$

$$R_4 = R_{I_{\min}} , R_4 = R_0 = \text{Constant resistance}$$

 \rightarrow Thus for a bridge with a single strain gauge we require R₃, R₄, R₂, and all should be equal to R₀ i.e. the unstrained resistance.

$$V = \frac{x}{x+r} - \frac{1}{1+r} , put r = 1$$
$$\Rightarrow V = \frac{x}{x+r} - \frac{1}{2} = \frac{2x - x - 1}{2(x+1)}$$

$$\Rightarrow V = \frac{x-1}{2(x+1)}$$

$$put x = \frac{R_I}{R_{I_{\min}}} \Rightarrow V = \frac{\left(\frac{R_I}{R_{I_{\min}}} - 1\right)}{2\left(\frac{R_I}{R_{I_{\min}}} + 1\right)}$$

$$\Rightarrow V = \frac{\left(R_I - R_{I_{\min}}\right)}{2\left(\frac{R_I}{R_{I_{\min}}} + 1\right)} = \frac{\Delta R}{2.(2)R_{I_{\min}}}$$

$$\because \frac{\Delta R}{R_{I_{\min}}} = Ge$$

$$\Rightarrow V = \frac{1}{4}Ge$$

$$E_{th} = \frac{V_s Ge}{4}$$

 \rightarrow This is the output voltage equation of a bridge element in single strain gauge in one arm of the bridge circuit.

Single element resistance thermo-meter in Deflection Bridge

$$R_T = R_{T_{\min}} (1 + \alpha T)$$
$$\Rightarrow \frac{R_T}{R_{T_{\min}}} = 1 + \alpha T$$
$$x = \frac{R_T}{R_{T_{\min}}}, r = \frac{R_3}{R_2}$$

Conclusion: -

 \rightarrow If x is going to be increased then linearity is going to decrease.

→If r
$$\downarrow$$
 = Sensitivity \downarrow

 \rightarrow As the RTD is a non-linear device when the RTD is incorporated in the deflection bridge its non-linearity is compensated with the increase in its sensitivity.

Consideration

If x<V = \frac{x}{r} - \frac{1}{r} = \frac{x-1}{r}
$$\frac{E_{th}}{V_S} = \frac{\left(\frac{R_T}{R_{T_{\min}}} - 1\right)}{R_3} = \frac{\left(R_T - R_{T_{\min}}\right)R_2}{R_3 R_{T_{\min}}}$$

$$\Rightarrow \frac{E_{th}}{V_S} = \frac{R_2}{R_3} \left(\frac{R_T}{R_{T_{\min}}} - 1\right)$$
For balanced condition $\frac{R_T}{R_T} = 1 + \alpha T$

For balanced condition
$$\frac{R_T}{R_{T_{\min}}} = 1 + \alpha T$$

$$\frac{E_{th}}{V_S} = \frac{R_2}{R_3} \left(1 + \alpha T - 1 \right)$$

$$\Rightarrow E_{th} = \frac{R_2}{R_3} \alpha T V_S$$

Two element resistance thermometer in Deflection Bridge

 \rightarrow The output voltage of two element resistance Thermometer Bridge is proportional to the temperature difference between the two RTD.

$$E_{th} \propto (T_1 - T_2)$$
$$R_1 = R_0 (1 + \alpha T_1)$$
$$R_2 = R_0 (1 + \alpha T_2)$$

 \rightarrow In order to balance the bridge a temperature difference between the two resistance thermometers must be zero.

$$\frac{R_4}{R_1} = \frac{R_3}{R_2}$$

$$\Rightarrow \frac{R_4}{R_0(1+\alpha T_1)} = \frac{R_3}{R_0(1+\alpha T_2)}$$
At balanced condition $T_1 = T_2$

$$\Rightarrow R_4 = R_3$$

 \rightarrow Balanced condition for two element RTD in deflection bridge

$$E_{th} = V_S \left[\frac{1}{1 + \frac{R_4}{R_1}} - \frac{1}{1 + \frac{R_3}{R_2}} \right] = V_S \left[\frac{1}{1 + \frac{R_4}{R_0(1 + \alpha T_1)}} - \frac{1}{1 + \frac{R_3}{R_0(1 + \alpha T_2)}} \right]$$
$$\Rightarrow E_{th} = V_S \left[\frac{R_0(1 + \alpha T_1)}{R_0(1 + \alpha T_1) + R_4} - \frac{R_0(1 + \alpha T_2)}{R_0(1 + \alpha T_2) + R_3} \right]$$

$$if \quad \frac{R_4}{R_0} >> 1$$

$$E_{th} = V_S \left[\frac{R_0(1 + \alpha T_1)}{R_0 + R_0 \alpha T_1 + R_4} - \frac{R_0(1 + \alpha T_2)}{R_0 + R_0 \alpha T_2 + R_3} \right]$$

$$\Rightarrow E_{th} = V_S \left[\frac{R_0(1 + \alpha T_1)}{R_4} - \frac{R_0(1 + \alpha T_2)}{R_4} \right]$$

$$\Rightarrow E_{th} = \frac{V_S R_0}{R_4} (\alpha T_1 - \alpha T_2) = \frac{V_S R_0 \alpha}{R_4} (T_1 - T_2)$$

$$\Rightarrow E_{th} \propto (T_1 - T_2)$$

Bridge with 4-strain gauge mounted on elastic element

Cantilever Beam (4-Strain Gauges)

$$\begin{split} R_{1} &= R_{3} = R_{0}(1+Ge) \\ R_{2} &= R_{4} = R_{0}(1-Ge) \\ E_{th} &= V_{S} \Bigg[\frac{1}{1+\frac{R_{4}}{R_{1}}} - \frac{1}{1+\frac{R_{3}}{R_{2}}} \Bigg] \\ &= V_{S} \Bigg[\frac{R_{1}}{R_{1}+R_{4}} - \frac{R_{2}}{R_{2}+R_{3}} \Bigg] \\ &\Rightarrow E_{th} = V_{S} \Bigg[\frac{R_{0}(1+Ge)}{R_{0}(1+Ge) + R_{0}(1-Ge)} - \frac{R_{0}(1-Ge)}{R_{0}(1-Ge) + R_{0}(1+Ge)} \Bigg] \\ &\Rightarrow E_{th} = V_{S} \Bigg[\frac{1+Ge}{2} - \frac{1-Ge}{2} \Bigg] \\ &\Rightarrow E_{th} = V_{S} .Ge \end{split}$$

Pillar Load Cell (4-Strain Gauges)

$$\begin{split} R_{1} &= R_{3} = R_{0} \left(1 + \frac{G vF}{AE} \right) \\ R_{2} &= R_{4} = R_{0} \left(1 - \frac{G vF}{AE} \right) \\ E_{th} &= V_{S} \left[\frac{1}{1 + \frac{R_{4}}{R_{1}}} - \frac{1}{1 + \frac{R_{3}}{R_{2}}} \right] \\ \Rightarrow E_{th} &= V_{S} \left[\frac{1}{1 + \frac{AE - GF}{AE - GF}} - \frac{1}{1 + \frac{AE - GF}{AE - GvF}} \right] \\ \Rightarrow E_{th} &= V_{S} \left[\frac{AE + G vF}{2AE + GF(v - 1)} - \frac{AE - GF}{2AE + GF(v - 1)} \right] \\ \Rightarrow E_{th} &= V_{S} \left[\frac{GF(v + 1)}{2AE + GF(v - 1)} \right] \quad (\div \ by \ AE) \\ \Rightarrow E_{th} &= V_{S} \left[\frac{\frac{GF}{AE}(v + 1)}{2 + \frac{GF}{AE}(v - 1)} \right] \\ Put \ \frac{GF}{AE} <<1 \\ \Rightarrow E_{th} &= \frac{V_{S}}{2} \times \frac{GF}{AE}(v + 1) \end{split}$$

$$Z_{1} = \frac{1}{j\omega C_{0}}$$

$$Z_{2} = R_{2}$$

$$Z_{3} = R_{3}$$

$$Z_{4} = \frac{1}{j\omega C_{h}}$$

$$E_{th} = V_{S} \left[\frac{1}{1 + \frac{Z_{4}}{Z_{1}}} - \frac{1}{1 + \frac{Z_{3}}{Z_{2}}} \right]$$

→ For balanced condition take $C_h = Minimum$

$$E_{th} = V_S \left[\frac{1}{1 + \frac{C_0}{C_R}} - \frac{1}{1 + \frac{R_3}{R_2}} \right]$$

Balanced condition

$$\frac{R_4}{R_{I_{\min}}} = \frac{R_3}{R_2}$$

$$\Rightarrow \frac{C_0}{C_{h_{\min}}} = \frac{R_3}{R_2}$$

 $E_{th} = 0$

$$\Rightarrow E_{th} = V_S \left[\frac{1}{1 + \frac{R_3}{R_2} \frac{C_{h_{\min}}}{C_h}} - \frac{1}{1 + \frac{R_3}{R_2}} \right]$$

To avoid Non – linearity

$$Put \ \frac{R_3}{R_2} >> 1$$

$$\Rightarrow E_{th} = V_S \left[\frac{1}{\frac{R_3}{R_2} \times \frac{C_{h_{\min}}}{C_h}} - \frac{1}{\frac{R_3}{R_2}} \right]$$
$$\Rightarrow E_{th} = \frac{V_S R_2}{R_3} \left[\frac{C_h}{C_{h_{\min}}} - 1 \right]$$

Capacitive differential Push-Pull displacement sensor in a Bridge element

$$\Rightarrow E_{th} = \frac{V_S}{2} \frac{x}{d}$$

Conclusion: - Thevenin voltage is proportional to the displacement and if we reverse Z_1 , Z_2 , Z_3 and Z_4 then it is going to become non-linear. This is used for increasing the sensitivity.

Inductive differential Push-Pull displacement sensor in a Bridge element

$$\Rightarrow E_{th} = V_S \left[\frac{1 + \alpha (a + x)}{1 + \alpha (a + x) + 1 + \alpha (a - x)} - \frac{1}{2} \right]$$
$$= V_S \left[\frac{1 + \alpha (a + x)}{2(1 + \alpha a)} - \frac{1}{2} \right]$$
$$= V_S \left[\frac{1 + \alpha (a + x) - 1 - \alpha a}{2(1 + \alpha a)} \right]$$
$$\Rightarrow E_{th} = \frac{V_S}{2} \left[\frac{\alpha x}{1 + \alpha a} \right]$$

AC Carrier System

Problem in conditioning low level DC signal from Sensor Output is:

External Noise Interference: -

- a) It includes the Ac Power Circuit which produce the interference signal in the measurement system
- b) It may be due to external power distribution line and heavy-rotating machines like generator and turbines.
- c) DC power circuits.
- d) Switching DC and AC power circuits when turbine and motor are taken off line or brought back on line this causes sudden large changes in power which can produce corresponding transient in measurement system.
- e) Corona effect: -
 - → The air in the vicinity of high voltage power circuits become ionised and a corona discharge results.
 - → The corona discharge from DC circuit results in random noise in measurement circuit and the corona discharge from the AC circuit result in sinusoidal at power frequency.

- f) Florescent Light:-
 - → The radio frequency transmitter, welding equipment and electrical discharge in the industry can produce the radio frequency interference at frequency of several Mega Hertz.

Block Diagram of AC carrier system:

 $PSD \rightarrow$ Phase Sensitive Demodulator

Amplifier \rightarrow Increases the strength of signal to avoid amplifier drift.

This is called Amplifier Drift.

$$e = \hat{e} \sin 2\pi f_i t$$

 \rightarrow Taking example of 4 strain gauge Deflection Bridge

$$E_{th} = V_S G e$$

 \rightarrow The input signal to the AC carrier system is the AC power Supply and strain produced in the Strain gauge.

 \rightarrow In AC carrier system the supply voltage is $V_S = \hat{V}_S \sin 2\pi f_S t$

 \rightarrow The strain changed is due to force applied in cantilever will be result in a variation of strain or, damped sine wave can be expressed as a sum of many sine wave.

Waveform of Supply Voltage

Frequency Spectrum of Supply Voltage

$$E_{th} = \sum_{i=1}^{m} G \widehat{V}_{S} \sin 2\pi f_{S} t \cdot \widehat{e} \sin 2\pi f_{i} t$$

$$=\sum_{i=1}^{m} \left(G \widehat{V}_{S} \widehat{e} \right) \sin 2\pi f_{S} t . \sin 2\pi f_{i} t$$

$$\Rightarrow E_{th} = \sum_{i=1}^{m} \left(\widehat{V}_i \right) \sin 2\pi f_S t . \sin 2\pi f_i t$$

Where, \hat{V}_i = Voltage of ith of component of strain if E_{th}=V_i

 $V_i = \hat{V_i} \sin 2\pi f_S t . \sin 2\pi f_i \rightarrow$ Output Equation of Multiplier

$$V_{i} = \frac{\widehat{V}_{i}}{2} \cos 2\pi (f_{s} - f_{i})t - \frac{\widehat{V}_{i}}{2} \cos 2\pi (f_{s} + f_{i})t$$

$$\downarrow \qquad \qquad \downarrow$$

$$LSB \qquad USB$$

Where, f_S = Carrier Frequency

 f_i = input frequency

 \rightarrow The amplitude modulated signal has only side band frequency and no carrier frequency. This type of modulation is called double side band supressed carrier.

 \rightarrow The drift voltage that coming in to existence at the output of the bridge element due to the drift in supply voltage V_S is multiplied by the use of AC amplifier and AC carrier system.

 \rightarrow The AC amplifier in the AC carrier system amplifying the low level output signal of bridge element.

PSD

PSD→ Ampinier with unit gain i.e. ±1

 \rightarrow It is an amplifier with unity gain, the output which depends on the polarity of supply

 \rightarrow Voltage V_s when the force applied to the beam is downward the strain gauge 1 and 3 will experience a tensile strain +e, so the input PSD is given by:

$$E_{th} = +Ge\hat{V}_S \sin 2\pi f_S t$$

 \rightarrow When the force is applied upward the input to the PSD is

$$E_{th} = -Ge\hat{V}_S \sin 2\pi f_S t$$
$$\Rightarrow E_{th} = -Ge\hat{V}_S \sin 2\pi f_S t$$
$$= Ge\hat{V}_S \sin(2\pi f_S t + 180^\circ)$$

 \rightarrow The mid-band frequency range of AC amplifier should include the frequency of LSB and USB of bridge output signal for better amplification.